网站首页 > 技术文章 正文
大家好,我是前端西瓜哥。今天我们来讲一道有点难度的二叉树算法题:从前序与中序遍历序列构造二叉树。
给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。
示例 1:
输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]
示例 2:
输入: preorder = [-1], inorder = [-1]
输出: [-1]
LeetCode 题目地址:
https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/
思路
这题的核心在于利用好二叉树的前序遍历和中序遍历特性。
让我们看看示例里的这个二叉树。
它的前序遍历为:[3,9,20,15,7]
中序遍历为:[9,3,15,20,7]
前序遍历的特点是先访问根节点,再访问左节点和右节点。所以前序遍历数组中,第一个元素就是整棵树的根节点。
前序遍历去掉首个元素后的剩余节点,其实可以找到某个索引位置,将这些节点分割,分割后左侧为左节点集合,右侧为右节点集合。
再看中序遍历,中序遍历什么特点。中序遍历遍历先访问左节点,再访问根节点,最后访问右节点。
前面我们通过前序遍历知道根节点是什么了,然后我们在中序遍历中找到这个根节点位置。
此时根节点位置的左侧就是根节点的左子树的所有节点(因为中序遍历 左->根->右 的特性),此时我们也可以计算出左子树的数量。
得到左子树数量,我们再回到前序遍历中,就能计算出左子树的子数组。
这里我们得到了左子树的前序遍历数组和中序遍历数组。
诶,这不是可以套娃了吗,接下来我们将这个两个数组再传入到递归函数中,递归就形成了。
右子树同理,这里就不赘述了。
代码实现
下面给大伙看看我的代码实现。
function buildTree(preorder, inorder) {
if (preorder.length === 0) return null;
const first = preorder[0];
const root = new TreeNode(first);
// 根节点在中序遍历中的位置
const idx = inorder.indexOf(first);
root.left = buildTree(
preorder.slice(1, idx + 1),
inorder.slice(0, idx)
);
root.right = buildTree(
preorder.slice(idx + 1),
inorder.slice(idx + 1)
);
return root;
};
每次我们找到中序遍历中根节点的位置 idx,找到数组的切割位置。分别对 preorder 和 inorder 进行切割,找到左子树和右子树各自的前序遍历和中序遍历数组,然后接着递归。递归结束条件为数组为空。
这种实现的优点是可读性好,不容易写错。
但从效率上,它可以更好,有两个地方可以改进:
- 每次都要拷贝旧数组生成一个新数组,其实这里我们可以通过维护两对数组开头和结束索引来避免拷贝
- 每次都要遍历 inorder 数组,来找出根节点的位置,效率较低。这点可以用哈希表缓存值到索引的映射。
我并不喜欢这种极致的优化导致的可读性下降。不过我还是得和你们说说优化思路的。
用了这两个方案后,我就要用一个新的递归函数了,因为参数变了。在这里,你可以给递归函数_buildTree 或 MyBuildTree 或者 f(函数的意思)、r(递归的意思)。
这里的命名我都不满意,我还是想用 buildTree。要是 JavaScript 也支持 Java 的那种真正的多态写法就好。Java Script 你这个冒牌 Java。
function buildTree(preorder, inorder) {
const map = {};
for (let i = 0; i < inorder.length; i++) {
map[inorder[i]] = i;
}
return _buildTree(preorder, inorder, map, 0, preorder.length, 0, inorder.length);
};
function _buildTree(preorder, inorder, map, pL, pR, iL, iR) {
if (pL >= pR) return null;
const first = preorder[pL];
const root = new TreeNode(first);
const idx = map[first];
const leftSize = idx - iL;
root.left = _buildTree(
preorder, inorder, map,
pL + 1, pL + 1 + leftSize,
iL, iL + leftSize
);
root.right = _buildTree(
preorder, inorder, map,
pL + leftSize + 1, pR,
idx + 1, iR
);
return root;
};
这种实现的递归函数参数非常多,眼花缭乱,而且计算索引时也非常容易写错,但相比第一种实现确实运行效率更高。
结尾
代码是写给人看的,不是写给机器看的,只是顺便计算机可以执行而已。
在可读性和性能上,我们需要根据场景进行权衡。
如果是业务逻辑代码,对性能没有极致的要求,请写给人看的代码,可读性优先。
如果是底层的注重性能的非业务代码,比如像是 C++ 的 STL 库,那就写出极致性能的代码,可读性可以适当妥协。但这要求你花费更多时间去编写代码,且需要有足够的测试用例来保证正确性。
如果你去面试做算法题,不要强求自己一次写出完美的最佳实现。写出第一版后,再在原来的基础上一点点优化。面试官想要考察你的代码优化能力和思考。
我是前端西瓜哥,欢迎关注我。
- 上一篇: CSS网格布局:现代网页设计的终极解决方案
- 下一篇: 经典监督式学习算法 - 决策树(决策监督制度)
猜你喜欢
- 2025-06-09 平面几何算法:求点到直线和圆的最近点
- 2025-06-09 解决雪花算法生成的ID传到前端后精度丢失问题
- 2025-06-09 什么是非对称加密算法?(什么是非对称加密,有哪些特点)
- 2025-06-09 React18的diff算法(react-diff-view)
- 2025-06-09 「算法题」判断一颗二叉树是否对称
- 2025-06-09 经典监督式学习算法 - 决策树(决策监督制度)
- 2024-09-29 前端算法面试题 前端面试题csdn
- 2024-09-29 每天一道算法题——最长连续递增序列
- 2024-09-29 高级前端开发带你搞懂vue的diff算法
- 2024-09-29 前端知识杂记(diff算法自解) diff算法 react
你 发表评论:
欢迎- 503℃几个Oracle空值处理函数 oracle处理null值的函数
- 500℃Oracle分析函数之Lag和Lead()使用
- 496℃Oracle数据库的单、多行函数 oracle执行多个sql语句
- 491℃0497-如何将Kerberos的CDH6.1从Oracle JDK 1.8迁移至OpenJDK 1.8
- 483℃Oracle 12c PDB迁移(一) oracle迁移到oceanbase
- 474℃【数据统计分析】详解Oracle分组函数之CUBE
- 457℃最佳实践 | 提效 47 倍,制造业生产 Oracle 迁移替换
- 455℃Oracle有哪些常见的函数? oracle中常用的函数
- 最近发表
- 标签列表
-
- 前端设计模式 (75)
- 前端性能优化 (51)
- 前端模板 (66)
- 前端跨域 (52)
- 前端缓存 (63)
- 前端react (48)
- 前端aes加密 (58)
- 前端脚手架 (56)
- 前端md5加密 (54)
- 前端富文本编辑器 (47)
- 前端路由 (61)
- 前端数组 (73)
- 前端定时器 (47)
- Oracle RAC (73)
- oracle恢复 (76)
- oracle 删除表 (48)
- oracle 用户名 (74)
- oracle 工具 (55)
- oracle 内存 (50)
- oracle 导出表 (57)
- oracle 中文 (51)
- oracle链接 (47)
- oracle的函数 (57)
- 前端调试 (52)
- 前端登录页面 (48)
本文暂时没有评论,来添加一个吧(●'◡'●)