网站首页 > 技术文章 正文
排序算法的介绍
排序也称排序算法 (Sort Algorithm),排序是将 一组数据 , 依指定的顺序 进行 排列的过程 。
排序的分类
- 内部排序 : 指将需要处理的所有数据都加载 到 内部存储器(内存) 中进行排序。
- 外部排序法: 数据量过大,无法全部加载到内 存中,需要借助 外部存储(文件等) 进行 排序。
常见的排序算法分类
算法的时间复杂度 度量一个程序(算法)执行时间的两种方法
1、事后统计的方法 这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;
二是所得时间的统计量依赖于计算机的硬件、软件等环境因素 , 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。
2、事前估算的方法 通过分析某个算法的时间复杂度来判断哪个算法更优.
时间频度
时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
举例说明-基本案例
比如计算1-100所有数字之和, 我们设计两种算法:
时间复杂度
1、一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。
2、T(n) 不同,但时间复杂度可能相同。 如:T(n)=n2+7n+6 与 T(n)=3n2+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n2)。
3、计算时间复杂度的方法:
用常数1代替运行时间中的所有加法常数 T(n)=n2+7n+6 => T(n)=n2+7n+1 修改后的运行次数函数中,只保留最高阶项 T(n)=n2+7n+1 => T(n) = n2 去除最高阶项的系数 T(n) = n2 => T(n) = n2 => O(n2) 常见的时间复杂度
说明:
常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(log 2 n)<Ο(n)<Ο(nlog 2 n)<Ο(n 2 )<Ο(n 3 )< Ο(n k ) <Ο(2 n ) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
从图中可见,我们应该尽可能避免使用指数阶的算法
时间复杂度示例介绍 1)常数阶O(1)
无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)
上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。
2)对数阶O(log 2 n)
说明:在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log 2 n也就是说当循环 log 2 n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log 2 n) 。 O(log 2 n) 的这个2 时间上是根据代码变化的,i = i * 3 ,则是 O(log 3 n) .
3)线性阶O(n)
说明:这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度
4)线性对数阶O(nlogN)
说明:线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)
5)平方阶O(n2)
说明:平方阶O(n2) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n2),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(nn),即 O(n2) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(mn)
6)立方阶O(n3)、K次方阶O(n^k)
说明:参考上面的O(n2) 去理解就好了,O(n3)相当于三层n循环,其它的类似
平均时间复杂度和最坏时间复杂度
平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。 最坏情况下的时间复杂度称最坏时间复杂度。 一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。 平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。
算法的空间复杂度简介
类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况 在做算法分析时, 主要讨论的是时间复杂度 。 从用户使用体验上看,更看重的程序执行的速度 。一些缓存产品(redis, memcache)和算法(基数排序)本质就是 用空间换时间.
欢迎大家多多留言讨论,如有错误请大神指教,如果你是小白也可以私信“资料”领取前端学习资料一起学习
- 上一篇: 总结下js排序算法和乱序算法 js 排序算法
- 下一篇: 常用的js排序算法 js几种排序算法
猜你喜欢
- 2025-06-13 8个步骤,创建项目管理时间表(建立项目管理系统)
- 2025-06-13 配电柜里最全电气原件 安装 排序 电气元件名称 让你一目了然 电工必备
- 2025-06-13 html基础必备-列表标记,前端小白一看就会
- 2025-06-13 家族坟墓的多种排列形式,墓葬布局的排列布局(图解)
- 2024-10-03 17种编程语言实现排序算法-插入排序
- 2024-10-03 前端工程师算法系列(4)-归并排序 归并排序js代码
- 2024-10-03 插入排序java java排序实现
- 2024-10-03 插入排序算法 插入排序算法c语言
- 2024-10-03 十大排序算法(javascript) 十大排序算法c语言
- 2024-10-03 常考算法题:无重复字符串的排列组合
你 发表评论:
欢迎- 519℃Oracle分析函数之Lag和Lead()使用
- 518℃几个Oracle空值处理函数 oracle处理null值的函数
- 515℃Oracle数据库的单、多行函数 oracle执行多个sql语句
- 504℃0497-如何将Kerberos的CDH6.1从Oracle JDK 1.8迁移至OpenJDK 1.8
- 501℃Oracle 12c PDB迁移(一) oracle迁移到oceanbase
- 491℃【数据统计分析】详解Oracle分组函数之CUBE
- 471℃Oracle有哪些常见的函数? oracle中常用的函数
- 470℃最佳实践 | 提效 47 倍,制造业生产 Oracle 迁移替换
- 最近发表
- 标签列表
-
- 前端设计模式 (75)
- 前端性能优化 (51)
- 前端模板 (66)
- 前端跨域 (52)
- 前端缓存 (63)
- 前端react (48)
- 前端aes加密 (58)
- 前端脚手架 (56)
- 前端md5加密 (54)
- 前端富文本编辑器 (47)
- 前端路由 (61)
- 前端数组 (73)
- 前端排序 (47)
- 前端定时器 (47)
- Oracle RAC (73)
- oracle恢复 (76)
- oracle 删除表 (48)
- oracle 用户名 (74)
- oracle 工具 (55)
- oracle 内存 (50)
- oracle 导出表 (57)
- oracle 中文 (51)
- oracle的函数 (57)
- 前端调试 (52)
- 前端登录页面 (48)
本文暂时没有评论,来添加一个吧(●'◡'●)